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Abstract
A new matrix-valued realization for the so(3, 1) algebra leads to a natural
generalization of the Coulomb scattering problem of a particle with spin.
The underlying su(2) gauge structure of this realization recasts the scattering
problem into a familiar form, namely, the Coulomb scattering problem of a
collection of dyons (particles having both electric and magnetic charges). Using
this equivalent form and the results of Zwanziger for such systems, the scattering
matrix can be calculated in the helicity formalism.

PACS numbers: 0220, 0365N, 7510, 1115, 1155

1. Introduction

The dynamical symmetry of the three-dimensional Coulomb problem is one of the best studied
examples illustrating the power of group theoretical methods. Since the seminal work of
Pauli [1], Fock [2] and Bargmann [3] we have learnt that the bound state problem can be
described using the symmetry group SO(4). The description of the less obvious scattering
states was given by Zwanziger [4] using the non-compact group SO(3, 1), i.e. the Lorentz-
group. After the advent of algebraic scattering theory (AST) [5] the scattering problem on
a Coulomb potential was also reformulated in a purely algebraic language. In AST one
identifies the symmetry of the interaction free (asymptotic) region, and then using the theory
of group contractions and expansions relates this asymptotic symmetry to the symmetry of
the scattering problem with some interaction term. After group theoretical manipulations by
introducing the so-called Euclidean connection [6, 7] the functional form of the scattering
matrix can be obtained. In this approach no explicit coordinate realization for the generators
and for the interaction term is needed. In the case of the Coulomb problem the symmetry group
in question is SO(3, 1) and the asymptotic symmetry group is E(3), the three-dimensional
Euclidean group. The functional form of the general SO(3, 1) scattering matrix calculated in
this way gives rise to the one of Coulomb scattering after a proper identification of an irreducible
representation describing the scattering process. This identification relates the label(s) of the
irrep to the scattering energy. Other irreps describe scattering situations different from the
Coulomb one but still having SO(3, 1) symmetry.
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However, there are some problems with this scheme. One of the most important problems
to be solved is the question of how to incorporate spin degrees of freedom into this formalism.
We expect that the addition of spin will lead to additional restrictions on the parameters
appearing in the functional form of the scattering matrix. AST somehow has to be appropriately
modified to tackle such situations.

The aim of this paper is twofold. Firstly we would like to present a generalization of
the Coulomb scattering problem with spin degrees of freedom also present. The symmetry
group in question is still SO(3, 1). Secondly, we would like to see the possible restrictions
that the inclusion of spin effects has on the parameters in the scattering matrix. This goal is
achieved by presenting an explicit matrix-valued realization for the so(3, 1) algebra. Though
the use of explicit realizations is contrary to the spirit of AST, via the use of this realization
we can calculate the S-matrix and demonstrate the nature of restrictions AST ought to cope
with. In this way, besides providing an interesting generalization of the Coulomb problem,
this new exactly solvable model, by giving us new hints, may pave the way for a generalized
AST capable of incorporating spin degrees of freedom as well.

The organization of this paper is as follows. In section 2 we give a brief review of the usual
Coulomb scattering problem with symmetry group SO(3, 1). The next section is devoted to
the construction of our matrix-valued realization for the ‘spinning Coulomb problem’, i.e. the
scattering problem of a charged particle with spin s on a Coulomb potential. In section 4
by using the underlying gauge structure of our realization, we diagonalize our matrix-valued
generators. In this way our scattering channels are completely decoupled. Moreover, this
gauge transformed form reveals a structure which is well known to physicists. It describes the
multichannel scattering problem of (2s+1) dyons (i.e. particles with both electric and magnetic
charges) on a Coulomb potential. Since the related problem for one channel has already been
solved by Zwanziger [12] we merely have to use his results. This is done in section 5. Here
we also present some hints for an alternative derivation. The conclusions and some comments
are left for section 6.

2. The Coulomb problem

The basic nonrelativistic Coulomb scattering problem is epitomized by the Hamiltonian

H = P 2

2
− α

R
(1)

in which α is the Coulomb coupling constant. Throughout this paper we use the system of
units in which m = h̄ = 1. This Hamiltonian supports an so(3, 1) group algebra with the
Casimir operators being the angular momentum operator {L} and the Runge–Lenz vector {K}.
Those operators are defined by

L = R × P (2)

and

K = 1
2 [P × L − L × P ] − αn (3)

where n ≡ R/R, and they satisfy commutation relations

[Li, Li] = iεijkLk [Li,Kj ] = iεijkKk [Ki,Kj ] = −iεijkLk(2H). (4)

Furthermore, for the Coulomb problem, L and K are conserved quantities since

[H,L] = [H,K] = 0. (5)

Notice however, that the commutation relations given in equation (4) are not the defining
relations of a Lie algebra. Rather they identify an algebra in which the structure constants
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also depend on the generators, but by restricting all the operators to subspaces of fixed energy,
a Lie-algebra results. Thus as we consider the scattering problem at fixed (positive) energy
E = k2/2, by introducing new generators K(k) ≡ K/k for each value of the scattering energy,
the (L,K(k)) pair satisfy an so(3, 1) algebra. And as so(3, 1) is a Lie algebra of rank two,
we have two independent Casimir operators, C1 and C2, commuting with those generators.
Specifically,

C1 = L2 − K(k)2 = −
(α
k

)2
− 1

C2 = L · K(k) = K(k) · L = 0.
(6)

3. The Coulomb problem with spin

To construct a generalization of the operators L and K incorporating spin, we seek a
realization of the algebra given in equation (4) in terms of matrix-valued differential operators
of (2s + 1) × (2s + 1) dimensions, where s is the spin. In that search it is natural to consider
replacing L by J(= L + S). The first question that arises, then, is: ‘What is the matrix-valued
form of the Runge–Lenz vector?’. Denoting this quantity by M , the commutation relations
that must then be satisfied are

[Ji, Jj ] = iεijkJk [Ji,Mj ] = iεijkMk [Mi,Mj ] = −iεijkJk(2H) (7)

H being a yet unknown Hamiltonian of the ‘spinning Coulomb problem’. Notice that the
second of these commutation relations states that M acts as a vector operator under J .

As a first candidate for M an obvious guess is to replace L by J in the expression,
equation (3), for K. However with this choice, the third commutator in equation (7) cannot
be satisfied. There are terms in the right-hand side of that commutator relation, then, that are
not proportional to Lk .

Another possibility is to modify the vector P as it appears in the expression for K,
by rendering it to a covariant derivative. In previous papers [8, 9], such was used to
construct matrix-valued realizations for the algebras so(n, 1), so(2, 2), and so(3, 2), and
wherein it was shown that the theory of matrix-valued realizations for those groups could
be cast in the language of the theory of induced representations. In our case the problem of
finding matrix-valued realizations describing spin is equivalent to finding the generators of the
induced representation for so(3, 1) induced by the (2s + 1)-dimensional representation of the
su(2) ∼ so(3) sub-algebra. Moreover, in [8] it was shown that the required generators can be
written in a form containing covariant derivatives D = P + A, where A is an su(2) ∼ so(3)
Lie-algebra-valued non-Abelian gauge-field. Consequently, a reasonable ansatz for the form
of our operators is

J = L + S

M = 1
2 (D × J − J × D) − αn

(8)

where D = P + A. Here A = ∑3
i=1 AiSi is an su(2) ∼ so(3) valued gauge-field, with the Si

being generators in the usual irreducible representation with spin s satisfying [Si, Sj ] = iεijkSk .
Furthermore we need M to behave as a vector operator as required by the second commutator
of equation (7), so that D also behaves as a vector. Then we require [Ji,Dj ] = iεijkDk .
Hence A also has to be a vector operator under J . The simplest ansatz for A satisfying
these conditions is A = f (R)S × R, where R = |R| and f is an unknown function to be
determined. With this choice the first two sets of the commutators of equation (7) are satisfied.
To determine the unknown function f (R) we can calculate [Mi,Mj ] and seek values of f (R)
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and H with which a term of the form −iεijkJk(2H) results. But f can be determined in an
easier fashion.

The key feature in doing so is that, according to general theory [8], the operator J can be
written in a gauge covariant form using the same D. Thereby J = R × P + S equates to
J = R × D + Φ for some vector Φ. Since the expression for J is independent of R, its gauge
covariant expression should be as well. Using the ansatz for A and comparing terms, it can be
shown that

J = R × D + (S · n)n (9)

where

A = 1

R2
S × R. (10)

Using this form, the matrix-valued generators can be expressed as

J = 1
2 (R × D − D × R) + (S · n)n (11)

and

M = 1
2 (D × J − J × D) − αn (12)

with it being understood that

D = P +
1

R2
S × R. (13)

Though these generator forms are similar in structure to those in equation (8), we prefer the
former for reasons of simplicity of application.

A straightforward, though laborious, calculation shows that the commutation relations of
equations (7) are satisfied when the modified Hamiltonian is

H = 1

2
D2 − α

R
+

1

2R2
(S · n)2 . (14)

One can also show that [H,J] = [H,M ] = 0, hence these operators then define conserved
quantities for the dynamics defined by H. Moreover, using the explicit form for A, an
alternative form of the Hamiltonian is

H = 1

2
PR

2 +
J2

2R2
− α

R
(15)

where PR = −i(∂R + 1/R). Hence the only modification of the usual Coulomb problem is the
replacement of L2 by J 2 in the centrifugal term.

As in the case of the usual Coulomb problem, we restrict the domain of definition of
the generators to a subspace of fixed scattering energy E = k2/2 of the Hamiltonian H.
Introducing the renormalized generators M (k) ≡ M/k the commutators for J and M (k) are
those of an so(3, 1) algebra, for which there are two Casimir operators

C1 = J2 − M (k)2 = (S · n)2 −
(α
k

)2
− 1 (16)

and

C2 = J · M (k) = −α

k
(S · n). (17)

Notice that C2 is proportional to the component of the spin along the direction of motion of the
particle and so we interpret the eigenvalue λ of the quantity −S ·n as an helicity. That helicity
can take the values −s � λ � s where s is the spin of the particle. Also as [J,S · n] = 0, the
Hamiltonian commutes with S · n. Hence helicity is a good quantum number characterizing
the scattering process.
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According to the representation theory of SO(3, 1), the irreducible unitary representations
of SO(3, 1) capable of describing scattering states are labelled by the pair of numbers (j0, j1)

where j0 = 0, 1
2 , 1, 3

2 , . . . and j1 = ic where c ∈ R. These are the unitary representations in
the principal series [10]. Then the Casimir operators acting on the scattering states, labelled
as |j0, j1〉, satisfy eigenvalue equations,

C1|j0, j1〉 = (j0
2 + j1

2 − 1)|j0, j1〉 (18)

and

C2|j0, j1〉 = −ij0j1|j0, j1〉. (19)

Consistent with the definitions, equations (16) and (17), the scattering states are

|j0, j1〉 =
∣∣∣|λ|, α

k
sgnλ

〉
− s � λ � s (20)

i.e. are helicity eigenstates. They span the irreducible unitary representation space of the
SO(3, 1) group.

We alternatively can describe the space of scattering states by extending the groupSO(3, 1)
by including also the space reflections. For this group the representation space is spanned by
the direct sum of the spaces:∣∣∣−λ,

α

k

〉
⊕
∣∣∣λ, α

k

〉
. (21)

These subspaces are mapped to each other by the operator of space reflections. According to the
general theory of invariants for this extended group there also exists, besides the second order
C1, a fourth order Casimir operator, C4. However, these operators cannot discriminate between
the mirror conjugated states of equation (21). In order to establish a one-to-one correspondence
between the labelling of states and the spectra of invariant operators it is sufficient to replace C4

by C2. This justifies our use of C2 since this operator, being a pseudoscalar one, discriminates
between the mirror conjugated states. Since the states |−λ, α

k
〉 and |λ,− α

k
〉 are equivalent [10]

we can use both equations (20) and (21) as representations of our scattering states.
We have managed to describe scattering states group theoretically but, for this description

to make sense, a physical meaning of the diagonalization of the operator −S · n must be
specified. This will be discussed in the next section.

4. Gauge transformations

A basic entity underlying this construction is the su(2)-valued gauge-field

A = 1

R2
S × R. (22)

Its presence in generators ensures that they transform covariantly under su(2) gauge
transformations. To study these gauge transformations it is useful to introduce the one-form
A = A(R) · dR which, since dR = n dR + R dn, can be written in the form

A = S · (n × dn). (23)

This one-form does not depend on R. It merely depends on the unit vector n which can be
parametrized by the local coordinates (θ, ϕ) of the sphere S2. A is thus a one-form residing on
S2 so that the local gauge transformations of interest can be parametrized by the points of S2.
Hence the general form of these transformations is

A′ = U †AU − iU †dU where U ∈ SU(2) (24)
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and, with |m| = 1,

U(θ, ϕ) = exp [iβ(θ, φ)m(θ, φ) · S] . (25)

Notice that the transformation is solely a local one over S2.
It is instructive to calculate the two-form (field strength of A) F = dA + iA ∧ A. The

result is

F = 1
2εijkBi dRj ∧ dRk (26)

where

B = n

R2
(S · n) (27)

acts like a non-Abelian magnetic monopole with strength associated with the operator S · n.
Then, as B transforms covariantly under SU(2) gauge transformations as

B′ = U †BU (28)

the requirement for the diagonalization of S · n also is a gauge transformation. This local
diagonalization scheme will turn B to a collection of (2s + 1) ordinary (Abelian) magnetic
monopoles with pole strengths given by the helicities. The fact that there is no global
transformation of this kind over S2 reflects the truly non-Abelian nature of the gauge-field of
equation (26). Note also that the last term in the right-hand side of equation (11) is R2B which
transforms covariantly. Thus the terms containing D do so as well and thus the generators J

and M are gauge covariant.
To determine the gauge transformation, we make use of

U †SU = cosβS + (1 − cosβ)m(m · S) + sin βS × m (29)

and

−iU †dU = (m · S) dβ + sin β(dm · S) + (1 − cosβ)(m × dm) · S (30)

which are special cases of the formulae developed previously [8] in a more general context.
It is easy to check that the choice

β = θ (m1,m2,m3) = (sin ϕ,− cosϕ, 0) (31)

defining U(θ, φ) per equation (25), not only diagonalizes S · n but also effects a transform A′

that gives an Abelian gauge-potential, i.e.

U †S · nU = S3 (32)

and

A′ = U †AU − iU † dU = (1 − cos θ) dϕ S3. (33)

In this gauge the generators J and M are diagonal matrices of the form

J ′ ≡ U †JU = 1
2 (R × D′ − D′ × R) + S3n (34)

and

M ′ ≡ U †MU = 1
2 (D

′ × J ′ − J ′ × D′) − αn (35)

where

D′ = P + A′ (36)

with A′ calculated from equation (33):

A′ = 1

R(R + R3)

(−R2

R1

0

)
S3. (37)
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Of course the process of diagonalization of S ·n via a gauge transformation is not unique.
Indeed using

U �→ Ueiγ S3 γ ≡ γ (θ, ϕ) (38)

the resulting transformation still effects diagonalization. But it leads to a gauge-field

A′′ = A′ + dγ S3. (39)

For example with the choice γ = −2ϕ one finds

A′′ = −(1 + cos θ) dϕ S3. (40)

By reverting to Cartesian coordinates, equation (33) equates to a collection of ordinary
magnetic monopole gauge-potentials with monopole strengths given by the helicities −s �
λ � s and which are singular on the negative z-axis (see also equation (37)). Hence these fields
are analytic merely on the patches homeomorphic to the northern hemispheres of the sphere
S2. Similarly, equation (40) equates to such a collection which is singular on the positive
z-axis with fields analytic in the southern hemisphere of the sphere S2. By comparison the
gauge-field of equation (23) is analytic over all of S2.

Thus our algebraic model can relate to a physical problem and one well known to physicists,
namely, the scattering of dyons (particles with both electric and magnetic charges) in a Coulomb
field. However, in contrast to the usual treatment that involved only one dyon, with this
approach one can entertain a collection of dyons. Moreover, the Dirac-quantized values for
the monopole charges are intrinsically related to the components of the spin along the direction
of motion of the particle, i.e. the helicities. We have also seen that the gauge transformed
realization (where the channels are completely decoupled) whilst being a more transparent
approach from the physical point of view, cannot make sense globally. On the other hand our
original realization, epitomized by equations (8)–(13), is global but the channels are coupled.

5. The scattering matrix

In the preceding section we demonstrated that, after diagonalization of the matrix-valued
operators J and M , it was feasible to transform the model of Coulomb scattering with spin
to a gauge equivalent form describing the Coulomb potential scattering of (2s + 1) uncoupled
dyons of monopole charge λ and spin s; the (2s + 1) scattering channels being labelled by
the helicity eigenvalues −s � λ � s. We note that the one channel problem of scattering
of individual dyons on a Coulomb potential has been investigated by Zwanziger [12] and so,
not only do we have his results for confirmation, we can also suggest an alternative algebraic
derivation of them based on the theory of induced representations.

First notice that for the global realization per equation (8), J · n = S ·n. This quantity is
proportional to C2 and commutes with the Hamiltonian of equation (15). Thus its eigenvectors
characterize incident and emergent particle scattering states, |in〉 and |out〉, respectively. These
states tend to wavepackets as t → −∞ and t → ∞ directed along the −k̂ and k̂ directions,
respectively. Here k̂ = k/k. Thus these states tend to the eigenstates of the operator n with
eigenvalues −1 for the ‘in’ and +1 for the ‘out’ cases, respectively. Hence

(−S · n) |k; in/out〉 = ±λ |k; in/out〉 . (41)

Using the representation theory of the so(3, 1) algebra, Zwanziger [12] has shown that the
scattering matrix

S(k′,k) ≡ 〈k′; out|k; in〉 (42)
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has the form

S(k′,k) =
∑
j�|λ|

(2j + 1)e2iδj Dj

−λ,λ(g
−1
k′ gk) (43)

where

k̂ = gkẑ gk ∈ SO(3) (44)

and:

e2iδj = .(j + 1 − iα/k)

.(j + 1 + iα/k)
j = |λ|, |λ| + 1, . . . . (45)

Thus δj have the same form as the Coulomb phase shifts. But the Hamiltonian, equation (15),
differs from that of the usual Coulomb problem by the replacement of L with J in the centrifugal
term. In addition, there is now a restricted set of allowed values for j and, unlike the results
of Zwanziger’s study, there is now a collection of such systems where −s � λ � s. There are
(2s + 1) phase shifts of the form equation (45), and the corresponding scattering matrix has a
(2s +1)× (2s +1) diagonal form. The scattering channels are labelled by the different possible
values of the helicity λ; the exact values of which are set by the restrictions on the allowed
values for j in equation (45). For λ = 0, when the particle has integer spin, ordinary Coulomb
scattering results but with j used instead of l. Note that the restriction on j depends solely on |λ|.

Following Zwanziger [12], we can calculate the scattering amplitude. Some subtle
issues about phase conventions then arise as is usual when one considers scattering processes
described in the helicity formalism. However, as the properties of the scattering matrix in this
formalism were discussed in detail in [12], we do not consider those points further, especially
as they play no role in calculation of the differential cross section. To specify that cross section,
it is convenient to revert to a Cartesian representation where k̂ = ẑ and k̂′ = cos θ ẑ + sin θ x̂.
In this frame

Dj

−λ,λ(g
−1
k′ gk) = d

j

−λ,λ(θ) (46)

and with f (k′,k) = S(k′,k)/2ik for θ �= 0 being the scattering amplitude, helicity cross
sections are [12]

σ(k, θ, λ) = |f (k′,k)|2 = λ2 + (α/k)2

k2(1 − cos θ)2
(47)

which, on averaging over the (2s+1) possible helicity states, gives the differential cross section
as 〈

dσ

d2
(E, θ, s)

〉
= α2

16E2sin4 θ
2

(
1 +

2

3
s(s + 1)

E

α2

)
. (48)

Hence the differential cross section retains the Rutherford form but with an energy dependence
modified by a linear term whose slope depends on the spin.

An alternative algebraic derivation can be made utilizing the Frobenius reciprocity theorem
of the theory of induced representations. Consider the chain of algebras so(2) ⊂ so(3) ⊂
so(3, 1). A matrix-valued generator of so(2) is J3 = L3 +S3, and so we induce a representation
for so(3) starting from the matrix-representation of so(2). Since this algebra is Abelian, it
has one-dimensional irreducible representations. Using S3 as the generator of the inducing
representation means that we use a reducible representation with individual one-dimensional
irreducible representations labelled by −s � λ � s. As has been shown [8], the generators
of the induced representation for so(3) are precisely the J ′ of equation (34) with the gauge-
potential of equation (33). Thus, after gauge transformation, it is precisely the quantity J ′2

of the Hamiltonian, equation (15), and the eigenvalues are j (j + 1). However, the range of
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allowed values for j is restricted. According to Frobenius reciprocity (see [8] and references
therein), the allowed values for j are those set by the restriction that the corresponding
so(3) representation restricted to so(2) contains the Abelian representation labelled by λ.
Restricting a (2j + 1) × (2j + 1)-dimensional matrix representation to so(2) gives the matrix
with diagonal entries, −j,−j + 1, . . . , j . Clearly among them the value λ occurs only when
j = |λ|, |λ| + 1 . . . ; precisely the restriction implicit in equation (45).

With this (induced) representation for the so(3) generators of equation (34), those
generators can be used as the starting point in a further inducing process, by which means
one can induce a representation for so(3, 1). That was how generators M ′ were built with
the embedding of generators J ′. Of course in this case the representation for so(3, 1) labelled
by (j0, j1) when restricted to the so(3) sub-algebra again contains precisely the j values
j0, j0 + 1, . . . where j0 ≡ |λ| according to equation (20). Notice that a similar construction
can be found [9] for the chain of algebras so(3) ⊂ so(3, 1) ⊂ so(3, 2).

6. Conclusions

In this paper an algebraic model with a dynamical symmetry group SO(3, 1) for the Coulomb
scattering problem of a charged particle with spin s was given. For the construction of this
model we introduced a new realization for the so(3, 1) algebra in terms of (2s + 1)× (2s + 1)-
dimensional matrix-valued differential operators. The six generators of so(3, 1) are the three
components of the total angular momentum J , and the three components of a suitable matrix-
valued generalization of the Runge–Lenz vector M . The Hamiltonian of the system is just
the usual Coulomb Hamiltonian with L2 replaced by J2 in the centrifugal term. Exploiting
the underlying SU(2) gauge structure of our realization we have shown how to transform this
realization to a diagonal one in spin space. In the gauge transformed realization the channels
are decoupled, and the resulting (2s + 1) one-channel problems are well known to physicists.
By denoting by λ (−s � λ � s) the possible values for the helicities of our particle, these are
scattering problems of dyons with monopole charge λ on a Coulomb field. Since this problem
has already been solved by Zwanziger [12], we merely had to use his result for the calculation
of the scattering quantities. Motivated by deep results of group theory we have also given hints
for an alternative derivation of Zwanziger’s results.

According to the results of our paper the Coulomb phase shifts retain their functional form
as fixed by AST [5] with l replaced by j , where of course |l − s| � j � l + s. The important
result of this paper is that the allowed values for j are further restricted by the condition
j = |λ|, |λ| + 1, . . ., with the values of λ labelling the different helicity channels. Hence we
may conclude that in order to account for such possible restrictions arising in an algebraic
description of scattering problems with spin AST has to be appropriately modified.

We remark in closing that the global gauge-field of equation (10) which is at the heart of our
construction is well known to gauge-field theorists, and is also a solution to the SU(2) Yang–
Mills equations [11]. On the other hand the local gauge-field of equation (37), which is a col-
lection of monopole (U(1)) gauge-fields obtained after the gauge transformation, is precisely
of the form usually induced in the effective nuclear Hamiltonian in the Born–Oppenheimer
treatment of diatomic molecules [13]. Hence, in principle, our Hamiltonian given in equa-
tion (15) should also be able to emerge as an effective Hamiltonian from coupled systems
of slow and fast variables, after averaging with respect to the fast degrees of freedom. Of
course we can use both of our gauge-fields for such considerations. Note, however, that these
gauge-fields living on S2 can be defined globally as SU(2) but merely locally as a collection
of U(1) gauge-fields. As can be shown, this statement is a consequence of the fact that unlike
U(1), SU(2) is simply connected.
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